Etudes

Qualités physico-chimiques de l'eau dans le bassin versant d'Ennery-Quinte, Artibonite

P. Duvivier, Département de phytotechnie, J. Blaise, Département de Production Animale, et N. Gonomy, Département de Génie Rural (GNR), Faculté d'Agronomie et de Médecine Vétérinaire (FAMV), Université d'Etat d'Haïti (UEH)

RESUME

Duvivier P., Blaise J. et Gonomy N. 2015. Qualités physico-chimiques de l'eau dans le Bassin-Versant d'Ennery-Quinte, Artibonite. RED 7 (1) : 14 - 23

Une étude a été réalisée entre Janvier et Septembre 2012 pour déterminer les qualités physico-chimiques de l'eau du Bassin-Versant Ennery-Quinte pour l'irrigation et la boisson. Ce Bassin-Versant est subdivisé en quatre sous-bassins : Ennery-Marmelade, Bayonnais, Labranle et Bassin Magnan. Après un inventaire des ressources hydriques et un relevé au Global Positioning System (GPS) des coordonnées géographiques des points d'eau, un échantillonnage prenant en compte les sous-bassins-versants, les sources et les rivières a été réalisé et 60 prélèvements d'eau ont été effectués. Parmi ces 60 échantillons, 17 ont été prélevés sur des rivières (six à Ennery-Marmelade, cinq à Bayonnais, quatre à Labranle et deux à Bassin Magnan). Les 43 autres provenaient des sources. Les échantillons ont été analyés au Laboratoire de Chimie de la FAMV pour 26 paramètres physico-chimiques et les résultats ont été comparés aux normes en vigueur. Un total de 108 sources a été inventorié, dont 44 à Ennery-Marmelade, 19 à Bayonnais, 16 à Labranle et 29 à Bassin Magnan. Les résultats des analyses physico-chimiques ont montré que pour l'ensemble du Bassin-Versant, les caractéristiques physico-chimiques de l'eau au moment des prélèvements ont été satisfaisantes pour 22 paramètres analysés pour l'irrigation et pour 21 paramètres analysés pour la boisson. Pour l'irrigation, la dureté totale de l'eau a été trop élevée dans l'ensemble du Bassin-Versant. Ces résultats ont révélé des teneurs en cuivre trop élevées à Ennery-Marmelade, Bayonnais et Bassin Magnan. Les teneurs en potassium à Ennery-Marmelade (sauf dans les sources), Labranle et Bassin Magnan et les teneurs en nitrates à Labranle (sources) ont dépassé les limites admises. Pour la boisson, les teneurs de l'eau en plomb ont été trop élevées et les teneurs en magnésium ont été trop faibles dans l'ensemble du Bassin-Versant. Les teneurs en cuivre ont été trop élevées, sauf à Labranle. Les teneurs en calcium ont été trop faibles, sauf pour les sources de Bayonnais et de Bassin Magnan. Les teneurs en matières en suspension ont été trop élevées à Ennery-Marmelade (sources), Bayonnais (rivière et sources) et Bassin Magnan

Mots clés : cuivre, plomb, teneurs élevées, toxicité

ABSTRACT

Duvivier P., Blaise J. et Gonomy N. Physico-chemical qualities of water in Ennery-Quinte Watershed, Artibonite. RED 7 (1): 14 - 23

A study was carried out between January to September in Ennery-Quinte Watershed to determine the physico-chemical qualities of water for irrigation and drinking. The watershed is divided into four subwatersheds: Ennery-Marmelade, Bayonnais, Labranle et Bassin Magnan. After an inventory of the water resources and the identification of the geographical coordinates of the water bodies using a Global Positioning System (GPS) apparatus, 60 water samples were collected. The sampling method took into account the subwatersheds, the sources and the rivers. Out of the 60 samples, 17 were taken from rivers, of which six in Ennery-Marmelade, five in Bayonnais, four in Labranle and two in Bassin Magnan. The 43 others were taken from the sources. The samples were analyzed in the Chemistry Laboratory of FAMV for 26 physico-chemical parameters and the results were compared to the norms in use. A total of 108 sources were inventoried, of which 44 in Ennery-Marmelade, 29 in Bayonnais, 19 in Labranle, and 16 in Bassin Magnan. The results of the chemical analysis showed that for the whole watershed, the characteristics were satisfactory for 22 parameters considered for irrigation water and 21 for drinking water. For irrigation, the total hardness of the water was too high for the whole watershed. The copper contents were too high in Ennery-Marmelade, Bayonnais and Bassin Magnan subwatersheds. The potassium contents in Ennery-Marmelade (except sources), Labranle, and Bassin Magnan and the nitrates contents in the sources of Labranle were higher than the limit values accepted. For drinking, the lead contents of the water were too high and the magnesium contents were too low in the whole watershed. The copper contents were too high, except in Labranle. The calcium contents were too low in the whole watershed, except in samples from the sources of Bayonnais and Bassin Magnan. The dispersed particles contents were too high in Ennery-Marmelade (sources), Bayonnais (river and sources) and Bassin Magnan (river).

Keywords: copper, lead, high contents, toxicity

Introduction

Le problème de l'eau en Haïti a toujours été préoccupant, non seulement du point de vue de la quantité, mais encore aujourd'hui du point de vue de la qualité. Les ressources en eaux naturelles du pays sont représentées par les eaux de surface (fleuves et rivières) dont 60% proviennent du Fleuve Artibonite, des Trois Rivières, de la Rivière de la Grande Anse, des rivières de l'Estère et de Cavaillon (1) et les eaux souterraines. Ces eaux auxquelles on a recours tant pour la boisson que pour l'irrigation sont exposées à la pollution d'origines diverses et ne devraient pas être utilisées sans un contrôle préalable. Dans ce contexte, le Ministère de l'Agriculture, des ressources Naturelles et du développement Rural (MARNDR), à travers le PIA, a commandé une étude des qualités physico-chimiques des ressources hydriques du Bassin-Versant Ennery-Quinte, l'un des grands bassins versants ciblés par les programmes dudit ministère.

La réalisation de cette étude par les laboratoires de la Faculté d'Agronomie et de Médecine Vétérinaire (FAMV) devrait permettre de générer des données à partir desquelles sera basée l'assistance agronomique à fournir aux consommateurs et aux exploitants agricoles. La connaissance de la valeur des paramètres analysés est insuffisante pour certains métaux lourds très néfastes pour la santé humaine tels le cuivre et le plomb. Ceux-ci sont naturellement présents dans certains minerais rencontrés dans plusieurs régions d'Haïti, en particulier dans le Département de l'Artibonite (9) et peuvent affecter les qualités des eaux. Ce travail se propose de réaliser une étude exhaustive des qualités physico-chimiques des eaux du Bassin-Versant Ennery-Quinte et de faire les recommandations appropriées.

Matériels et méthode Inventaire des ressources hydriques

La liste des sources et des rivières et la carte du réseau hydrographique du Bassin-Versant ont été obtenues auprès du Bureau de Coordination du PIA. Le Bassin-Versant Ennery-Quinte est subdivisé en quatre sous-bassins (Ennery-Marmelade, Bayonnais, Labranle et Bassin Magnan). Les quatre sous bassin-versants ainsi que la basse plaine des Gonaïves ont été explorés. Au cours des visites d'exploration, l'ensemble des sources du bassin versant ont été inventoriées et une liste exhaustive a été constituée et comparée avec celle fournie par le Bureau de Coordination du PIA. Les coordonnées géographiques des sources ont été déterminées, utilisant un GPS de marque Garmin, en vue de l'établissement d'une carte de leur distribution. Le parcours des rivières principales a été repéré sur une carte du réseau hydrographique et validé sur le terrain.

Echantillonnage et prélèvement d'échantillons

Les prélèvements d'échantillons d'eau ont été effectués au niveau des quatre sous-bassins. Un total de 60 échantillons a été prélevé dans l'ensemble des quatre sous-bassins en utilisant un plan d'échantillonnage aléatoire stratifié. Chaque sousbassin a été considéré comme une strate. L'ensemble des sources inventoriées dans chaque sous-bassin constituait une base d'échantillonnage pour le sous-bassin. Des échantillons d'eau ont été prélevés dans 40% des sources inventoriées. Ce pourcentage correspondait à 43 prélèvements dans les sources, dont 19 à Ennery-Marmelade, 7 à Bayonnais, 6 à Labranle et 11 à Bassin Magnan. Les tirages ont été faits de manière aléatoire. Un code numérique a été attribué à chaque source inventoriée. Puis, la fonction RAN-BETWEEN du logiciel Excel a été utilisée pour générer des nombres aléatoires à l'intérieur de la gamme des nombres attribués. Le tableau 1 présente les noms des sources dans lesquelles des échantillons ont été prélevés par sous-bassin versant et leur localisation, incluant leurs coordonnées géographiques.

En plus des 43 prélèvements dans les sources, 17 prélèvements ont été

Tableau 1. Liste des sources dans lesquelles des échantillons ont été prélevés et leur localisation, incluant leurs coordonnées géographiques

Sour	Nom Source	#		nées GPS	- Localité	Zone	Source
ce#		Point		Y			captée
	-Bassin-Versa					_	
1	Ti Pyè	871	764043			Ennery	Oui
2	Gran Kay	873	764041			Ennery	Non
3	Chanson	874	764393		Haut-Pascal	Ennery	Oui
4	Bisket/Lector			2152634		Savane carré	Oui
5	Jeune	998	769389			Savane carré	Oui
6	Cresson	881	767304			Savane carré	Non
7	Cense	882		2156278		Puilboro	Non
8	Liquoi 1	941		2158864		Passe-Reine	Non
9	Trompette	944	759216			Passe-Reine	Oui
10	Nan Source	946	759948	2158212	Desire	Passe-Reine	Oui
11	Minguette	948	761095	2159558	Minguette	Passe-Reine	Oui
12	Brillant	950	758572	2158780		Passe-Reine	Non
13	Debois	979	775062	2158994	Bas Rivière	Platon/Marmelade	Non
14	Denord	980	774564	2158827	Nan Denord	Platon/Marmelade	Non
15	Kachay	983	774550	2159475	Bauche	Platon/Marmelade	Oui
16	Victoria	988	771502	2160737	Victoria	Platon/Marmelade	Non
17	Puilbalo	995	762700	2153984	Puilbalo	Ennery	Non
18	Mousambé	996	764618	2155266	Mousambé	Ennery	Oui
19	Fleury	999	769014	2151056	Laury	Savane carré	Non
Sous	- Bassin-Versa	ant Ba	yonnais				
20	Tête source	951	755382	2156378	Tête Source	La Source	Non
21	Patousen	952	755354	2155881	Patousen	La Source	Non
22	Jilo	964	758520	2148886	Nan jilo	Savane ronde	Non
23	Elia	969	760531	2147491	Zorange	Cagace	Non
24	Bwadibout	972	761366	2147315	Raymond	Cagace	Non
25	Foucad	973	761754	2148281	Foucad	Cagace	Oui
26	Innocent	974	761192	2149144	Michal Paul	Cator	Non
Sous-Bassin-Versant Labranle							
27	Passe source	923	749781	2169376	Gotiche	Dorlette	Non
28	Dema 2	928	752065			Bras à droite	Non
29	Source Glassi		752260			Bras à droite	Non
20	Source Deye		.02200	2100000	GIGGGI	Dias a arone	11011
30	2	931	753268	2169901	Deye	Bras à droite	Non
31	Bengo	934	754583	2170498	Chatelain	Bras à droite	Non
32	Popot 2	939	750666	2170870	Nan Popot	Bras à gauche	Non
Sous	BassinVersar	nt Bas	sin Magı	nan			
33	Chery	890	737305	2164888	Nan Davi	Bassin Magnan	Non
34	Cadet 1	891	737821	2164354	Nan Casse	Bassin Magnan	Oui
35	Parenn	895	738647	2164381	haut Korail	Bassin Magnan	Non
36	Tisson	896	738717	2164273	Korail	Bassin Magnan	Non
37	Bas cadet	897	738315		Bas cadet	Bassin Magnan	Non
38	Ti kajou	899	738184		Nan kajou	Bassin Magnan	Non
39	Timeron	900	739105		-	Bassin Magnan	Non
40	Jn Mary	907	741144			Declin	Non
41	Puante	914	740358		Zoranj si	Bassin Magnan	Non
	Grand cour-				-	J	
42	sier	918	741901	2161685	Kolonne	Bassin Magnan	Non
43	Nan mapou	905	741326	2162889	Cinq carreau	Bassin Magnan	Non

effectués sur les rivières. La longueur de chaque rivière a été mesurée sur la carte du réseau hydrographique. Un sous-échantillon de points équidistants de prélèvement a été repéré sur chaque rivière. Ces points ont été répartis comme suit : 6 sur Ennery-quinte, 5 sur Bayonnais, 4 sur Labranle et 2 sur Sedren; soit un total de 17 points. Le nombre de points prélevés sur chaque rivière a été fonction de la longueur du parcours de la rivière sur le sous-bassin-versant. Après l'échantillonnage, des missions ont été effectuées sur le terrain pour prélever les échantillons d'eau à analyser dans les sources préalablement repérées au GPS. Des ortho photo plans du Bassin-Versant Ennery-Quinte ont été utilisés pour la digitalisation du réseau hydrographique et l'identification des points de prélèvement. Le logiciel Arc Gis et des polygones de délimitation

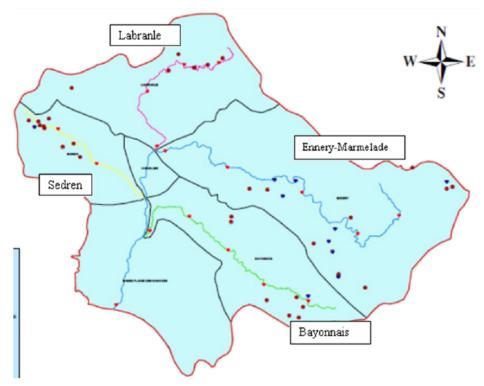


Figure 1. Carte de prélèvement des échantillons d'eau dans les sources du Bassin-Versant Ennery-Quinte

Tableau 2. Valeurs observées (moyennes± Ecart-type, n=6) des paramètres physico-chimiques de l'eau de la Rivière Ennery-Marmelade

Paramètre	Unité	Valeur ob-	No	rmes
		servée	Boisson	Irrigation
Caractéristiques de base				
pH		$6,94\pm3,26$	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO₃/l	228,22±29,82	Max 500	0-90
Alcalinité	mgCaCO3/l	253,84±26,98		0-400
Matières en suspension	mg/l	$4,50\pm5,54$	Max 5	0-50
Indicateurs de salinité				
CE	$\mu mhos/cm$	533,33±93,52	Max 1250	0-3000
TDS	mg/l	$314,33\pm59,85$	0-800	0-2000
NaCl	mg NaCl/l	259,17±49,64	Max 2000	
Anions				
Chlorures	mg Cl/l	22,53±13,78	Max 250	0-1050
Nitrates	mgNO ⁻ 3/l	$0,00\pm0,00$	Max 50	0-10
Nitrites	$mg NO^{2-}/l$	$3,34\pm8,17$	Max 0.1	
Phosphates	$mg PO_4^{2-}/l$	$0,20\pm0,39$	Max 2	0-2
Sulfates	$mg SO_4^2-/l$	29,17±15,44	Max 250	0-960
Fluor	mg F·/l	$0,18\pm0,24$	1-2	0-1
Ammoniaque	Mg NH ₄ +/l	$0,07\pm0,02$	Max 0.5	0-5
Hydrogénocarbonates	mg HCO:/l	309,68±32,91		0-610
Carbonates (TA)	mg CO-/l	$0,67\pm1,17$		0-30
Cations				
Calcium	mg Ca ²⁺ /l	$69,64\pm22,62$	80 - 100	0-400
Magnésium	${ m mg~Mg^{2+}/l}$	15,81±5,37	80 - 100	0-60
Sodium	mg Na ⁺ /l	$55,98\pm60,20$	Max 200	0-920
Taux d'adsorption de Na (SAR)		1,61±1,78		0-9
Fer	$ m mg~Fe^{2+}/l$	$0,01\pm0,01$	Max 0.3	0-5
Potassium	$mg K^+/l$	$2,02\pm1,01$	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	$0,10\pm0,06$	Max 10	100
Cuivre	mg Cu/l	$3,14\pm0,74$	Max 2	0-0,2
Plomb	$\operatorname{mg}\operatorname{Pb}/\operatorname{l}$	$0,36\pm0,36$	Max 0.01	0-5,0
Zinc	mg Zn / l	$0,44\pm0,21$	Max 3	0-2,0

ont été utilisés pour la délimitation du Bassin-Versant et ses sousbassins. La figure 1 montre la répartition géographique des sources et des points sur les rivières dans lesquelles des échantillons ont été prélevés par sous-bassin-versant.

Analyses de laboratoire

Un total de 26 paramètres physicochimiques a été retenu pour chaque échantillon. Le pH a été mesuré utilisant un pH-mètre à électrode. La dureté totale, l'alcalinité, le calcium, le magnésium, les chlorures, les carbonates et les hydrocarbonates ont été déterminés par titrimétrie. Les matières en suspension ont été déterminées par microfiltration. Une étuve Fisher isotemp, Modèle 310, a été utilisée pour le séchage. Une balance analytique, modèle – ADAM AAA 300L, de capacité : 300g et de sensibilité : 0,1 mg a été utilisée pour les pesées. Les paramètres de salinité : conductivité électrique (CE) et teneur en NaCl, ont été mesurés avec un conductivimètre DREL 5/ HACH. Les solides dissous totaux (TDS) ont été déduits de la CE (TDS= CE en microhms/ cm*0,64). Un spectrophotomètre aqualitique, modèle : AL 800 a été

utilisé pour déterminer les nitrates, les nitrites, le fer et le plomb avec des limites de détection minimales respectives de 4, 0.03, 0.01 et 0.1 mg/l. La détermination des phosphates, des sulfates, du fluor, de l'ammoniac et du cuivre a été effectuée en utilisant un spectrophotomètre HANNA - Modèle C 99 -Multiparamètre bench photometer -Série: H 97513. Le sodium et le potassium ont été dosés utilisant un photomètre de flamme SHER-WOOD, modèle 410. Le taux d'absorption du sodium (SAR) a été déduit par calcul à partir des teneurs en calcium, magnésium et sodium exprimées en meg/l [SAR=Na/√ ((Ca+Mg)/2)]. L'arsenic a été dosé par la méthode de Cribier (2).

Traitement des données et interprétation des résultats

Les données brutes obtenues ont été soumises à une analyse statistique descriptive. Pour chaque paramètre, la moyenne et l'écart-type ont été calculés. Les normes OMS ont été utilisées pour interpréter résultats relatifs à la qualité de l'eau de boisson. Les résultats ont été interprétés au regard des normes de qualités physico-chimiques des eaux destinées à la boisson (6) et à l'irrigation (3, 4, 5, 7, 8 et 10). Les résultats obtenus sont présentés par sousbassin-versant, séparément pour les échantillons provenant des sources et ceux provenant des rivières.

Résultats et discussion

Caractéristiques physicochimiques des échantillons d'eau prélevés sur le Sous-Bassin -Versant Ennery- Marmelade

Echantillons d'eau prélevés sur la Rivière Ennery-Marmelade

Les résultats des analyses physicochimiques des échantillons d'eau prélevés sur la rivière Ennery sont présentés dans le tableau 2. Ces résultats montrent qu'au moment des prélèvements, les qualités physicochimiques de l'eau ont été acceptables pour l'irrigation sur la base de 23 des 26 paramètres testés pour l'irrigation (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer. arsenic, plomb et zinc). Cependant, la dureté totale a été de 228.10 mg/l CaCO₃. Elle s'est révélée trop élevée par rapport aux valeurs normales fixées entre 0 et 90 mg/l CaCO₃. En effet, entre 90 et 335 mg CaCO₃/l, la dureté totale indique un risque modéré de précipitation du calcium et du magnésium. Quand ce phénomène se produit, le pourcentage de sodium lié aux particules d'argile par rapport au total des cations échangeables augmente et entraîne une augmentation de la salinité/ sodicité du sol. Les teneurs en potassium (2.26 mg/l en moyenne) ont dépassé légèrement les limites admises qui sont de 0 à 2 mg/l, tandis qu'avec une valeur moyenne de 3.19

mg/l, les teneurs en cuivre ont dépassé largement la limite admise qui est de 0.2 mg/l.

Pour la boisson, les qualités physicochimiques des échantillons d'eau analysés ont été acceptables pour 22 des 26 paramètres retenus (pH, dureté totale, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, sodium, SAR, fer, potassium, arsenic et zinc). La concentration en cuivre (3.19 mg/l) a dépassé la valeur limite (2 mg/l). De même, la teneur en plomb (0.21 mg/l) a dépassé la valeur limite qui est de 0.01 mg/l. Quant aux teneurs en Ca (69,64 mg/ l) et en Mg (15,81mg/l), elles se sont révélées trop faibles par rapport aux limites normales fixées (entre 80 et 100 mg/l).

Tableau 3. Valeurs observées (moyennes± Ecart-type, n=19) des paramètres physico-chimiques de l'eau des sources de Ennery-Marmelade

Paramètre	Unité	Valeur ob-	Normes	
		servée	Boisson	Irrigation
Caractéristiques de base				
pH		$7,87\pm0,32$	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO3/l	$230,35\pm49,74$	Max 500	0-90
Alcalinité	mgCaCO3/l	227,87±51,63		0-400
Matières en suspension	mg/l	19,32±46,11	Max 5	0-50
Indicateurs de salinité				
CE	$\mu mhos/cm$	498,42±117,85	Max 1250	0-3000
TDS	mg/l	$318,99\pm75,42$	0-800	0-2000
NaCl	mg NaCl/l	$261,05\pm71,29$	Max 2000	
Anions				
Chlorures	mg Cl/l	11,62±13,10	Max 250	0-1050
Nitrates	mgNO-3/l	$2,37\pm3,53$	Max 50	0-10
Nitrites	mg NO ² -/l	$0,00\pm0,00$	Max 0.1	
Phosphates	$mg PO_4^{2-}/l$	$0,10\pm0,06$	Max 2	0-2
Sulfates	${ m mg~SO_4^2-/l}$	19,08±11,45	Max 250	0-960
Fluor	mg F·/l	0.03 ± 0.06	1-2	0-1
Ammoniaque	${ m Mg~NH_4^+/l}$	0.07 ± 0.03	Max 0.5	0-5
Hydrogénocarbonates	mg HCO-/l	278,78±67,88		0-610
Carbonates (TA)	mg CO·/l	0.81 ± 1.35		0-30
Cations				
Calcium	mg Ca ²⁺ /l	$74,71\pm20,29$	80 - 100	0-400
Magnésium	$ m mg~Mg^{2+}/l$	$12,14\pm7,96$	80 - 100	0-60
Sodium	mg Na+/l	28,43±18,91	Max 200	0-920
Taux d'adsorption de sodium (SAR)		$0,78\pm0,50$		0-9
Fer	$mg Fe^{2+}/l$	$0,00\pm0,01$	Max 0.3	0-5
Potassium	$\mathbf{mg} \; \mathbf{K}^{+}\!/\mathbf{l}$	$1,57\pm1,74$	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	$0,10\pm0,06$	Max 10	100
Cuivre	mg Cu/l	$2,86\pm1,38$	Max 2	0-0,2
Plomb	mg Pb / l	$0,19\pm0,12$	Max 0.01	0-5,0
Zinc	mg Zn / l	$0,34\pm0,22$	Max 3	0-2,0

Echantillons d'eau prélevés dans les Sources du Sous-Bassin-Versant Ennery-Marmelade

Les résultats des analyses physicochimiques des échantillons d'eau prélevés dans les sources du Sous-Bassin-Versant Ennery-Quinte sont présentés dans le tableau 3. Ces résultats montrent qu'au moment des prélèvements, les qualités physicochimiques de l'eau ont été acceptables pour l'irrigation sur la base de 24 des 26 paramètres testés (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, potassium, arsenic, plomb et zinc). La dureté totale a été de 230.35 mg/l CaCO₃. Elle s'est révélée trop élevée par rapport aux normes qui sont de 0 à 90 mg/l CaCO₃. Avec une valeur movenne de 2.86 mg/l, les teneurs en cuivre ont dépassé largement la limite maximale admise qui est de 0.2 mg/l.

Pour la boisson, les qualités physicochimiques des échantillons d'eau analysés ont été acceptables pour 21 des 26 paramètres retenus (pH, dureté totale, alcalinité, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, Na, SAR, Fe, K, As et Zn). La teneur en Cu observée (2.86 mg/l) a dépassé la limite maximale de 2 mg/ l admise. De plus, la teneur en Pb qui a été de 0.19 mg/l, a dépassé largement la limite maximale de 0.01 mg/l admise. La teneur en matières en suspension (19.32 mg/l) a été aussi supérieure à la valeur maximale admise qui est 5 mg/l. Quant aux teneurs en Ca (74.71 mg/ l) et en Mg (12.14 mg/l), elles se sont révélées trop faibles par rapport aux limites normales fixées entre 80 et 100 mg/l.

Caractéristiques physicochimiques des échantillons d'eau prélevés sur le Sous-Bassin -Versant Bayonnais

Echantillons d'eau prélevés sur la Rivière Bayonnais

Les résultats des analyses physico-

Tableau 4. Valeurs observées (moyennes± Ecart-type, n=5) des paramètres physico-chimiques de l'eau de la Rivière Bayonnais

Paramètre	Unité	Valeur ob-	Normes	
		servée	Boisson	Irrigation
Caractéristiques de base				
pH		$8,33\pm0,15$	6.5 - 9.2	5,5-8,5
Dureté Totale	mgCaCO3/l	$214,15\pm32,15$	Max 500	0-90
Alcalinité	mgCaCO3/l	$360,12\pm201,12$		0-400
Matières en suspension	mg/l	$9,20\pm7,26$	Max 5	0-50
Indicateurs de salinité				
CE	$\mu mhos/cm$	532±167,69	Max 1250	0-3000
TDS	mg/l	$340,48\pm107,32$	0-800	0-2000
NaCl	mg NaCl/l	252±79,18	Max 2000	
Anions				
Chlorures	mg Cl/l	12.86±8.06	Max 250	0-1050
Nitrates	mgNO ⁻ 3/l	$4,79\pm6,56$	Max 50	0-10
Nitrites	$mg NO^{2-}/l$	$0,012\pm0,02$	Max 0.1	
Phosphates	$mg PO_4^{2-}/l$	$0,10\pm0,07$	Max 2	0-2
Sulfates	${ m mg~SO_4^2-/l}$	$23,86\pm15,21$	Max 250	0-960
Fluor	mg F·/l	$0,52\pm0,50$	1-2	0-1
Ammoniaque	${ m Mg~NH_4^+/l}$	$0,09\pm0,05$	Max 0.5	0-5
Hydrogénocarbonates	mg HCO·/l	439,35±245,37		0-610
Carbonates	mg CO-/l	$0,05\pm0,12$		0-30
Cations				
Calcium	mg Ca ²⁺ /l	$67,00\pm5,83$	80 - 100	0-400
Magnésium	$ m mg~Mg^{2+}/l$	$11,41\pm5,10$	80 - 100	0-60
Sodium	mg Na ⁺ /l	83,23±71,01	Max 200	0-920
Taux d'adsorption de sodium (SAR)		$2,47\pm5,18$		0-9
Fer	${ m mg}~{ m Fe}^{2+}/{ m l}$	$0,01\pm0,01$	Max 0.3	0-5
Potassium	$\mathbf{mg} \; \mathbf{K}^{+}/\mathbf{l}$	$1,62\pm1,21$	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	0.06 ± 0.05	Max 10	100
Cuivre	mg Cu/l	$4,09\pm0,58$	Max 2	0-0,2
Plomb	mg Pb / l	$0,24\pm0,02$	Max 0.01	0-5,0
Zinc	mg Zn / l	0.32 ± 0.05	Max 3	0-2,0

chimiques des échantillons d'eau prélevés sur la rivière Bayonnais sont présentés dans le tableau 4. Comme dans le cas du Sous-Bassin Ennery, ces résultats montrent qu'au moment des prélèvements, les qualités physico-chimiques de l'eau ont été acceptables sur la base de 24 des 26 paramètres testés pour l'irrigation (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, potassium, arsenic, plomb et zinc). La dureté totale de 214.15 mg/l de CaCO3 obtenue se révèle trop élevée par rapport aux normes fixées entre 0 et 90 mg/l CaCO3. Avec une valeur moyenne de 4.09 mg/l, les teneurs en cuivre ont dépassé largement les

limites admises qui sont de 0 à 0.2 mg/l.

Pour la de boisson, les qualités physico-chimiques des échantillons d'eau analysés ont été acceptables pour 21 des 26 paramètres retenus (pH, dureté totale, alcalinité, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, potassium, arsenic et zinc). La teneur en cuivre a été de 4.09 mg/l et a dépassé la valeur limite de 2 mg/l ; la teneur en plomb a été de 0.24 mg/l, alors que la valeur limite est de 0.01 mg/l. Les matières en suspension ont atteint une teneur de 9.2 mg/l, alors que la limite admise est de 5 mg/l. Quant aux teneurs en calcium (74.71 mg/l)

Tableau 5. Valeurs observées (moyennes± Ecart-type, n=7) des paramètres physico-chimiques de l'eau Sources du Sous-Bassin-Versant Bayonnais

Paramètre	Unité	Valeur ob-	Normes	
		servée	Boisson	Irrigation
Caractéristiques de base				
pH		$7,92\pm0,30$	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO3/l	264,98±54,47	Max 500	0-90
Alcalinité	mgCaCO3/l	228,76±49,67		0-400
Matières en suspension	mg/l	9,50±11,55	Max 5	0-50
Indicateurs de salinité				
CE	μmhos/cm	563,75±213,14	Max 1250	0-3000
TDS	mg/l	360,8±136,40	0-800	0-2000
NaCl	mg NaCl/l	293,60±83,14	Max 2000	
Anions				
Chlorures	mg Cl/l	22,70±21,43	Max 250	0-1050
Nitrates	mgNO-3/l	9,00±5,66	Max 50	0-10
Nitrites	mg NO ²⁻ /l	0.02 ± 0.05	Max 0.1	
Phosphates	mg PO ₄ 2-/1	$0,11\pm0,07$	Max 2	0-2
Sulfates	mg SO ₄ 2-/1	15,68±8,71	Max 250	0-960
Fluor	mg F-/l	0.02 ± 0.05	1-2	0-1
Ammoniaque	Mg NH ₄ +/l	$0,07\pm0,02$	Max 0.5	0-5
Hydrogénocarbonates	mg HCO·/l	281,20±62,43		0-610
Carbonates	mg CO·/l	$0,42\pm0,24$		0-30
Cations				
Calcium	mg Ca ²⁺ /l	80,17±19,69	80 - 100	0-400
Magnésium	$mg Mg^{2+/l}$	16,16±8,91	80 - 100	0-60
Sodium	mg Na+/l	42,77±37,72	Max 200	0-920
Taux d'adsorption de sodium (SAR)		1,07±0,90		0-9
Fer	$mg Fe^{2+}/l$	0.00 ± 0.00	Max 0.3	0-5
Potassium	mg K+/l	$1,89\pm2,45$	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	$0,04\pm0,05$	Max 10	100
Cuivre	mg Cu/l	2,50±1,38	Max 2	0-0,2
Plomb	mg Pb/l	$0,18\pm0,12$	Max 0.01	0-5,0
Zinc	mg Zn / l	$0,48\pm0,25$	Max 3	0-2,0

Tableau 6. Valeurs observées (moyennes± Ecart-type, n=5) des paramètres physico-chimiques de l'eau de la Rivière Labranle

Paramètre	Unité	Valeur ob-	Normes	
		servée	Boisson	Irrigation
Caractéristiques de base				
pH		$7,39\pm0,11$	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO3/l	166,19±35,93	Max 500	0-90
Alcalinité	mgCaCO3/l	177,91±56,48		0-400
Matières en suspension	mg/l	0±0	Max 5	0-50
Indicateurs de salinité				
CE	µmhos/cm	446,25±241,43	Max 1250	0-3000
TDS	mg/l	285,6±154,52	0-800	0-2000
NaCl	mg NaCl/l	213,75±120,51	Max 2000	
Anions				
Chlorures	mg Cl/l	35,73±31,27	Max 250	0-1050
Nitrates	mgNO-3/l	7,64±7,37	Max 50	0-10
Nitrites	mg NO ²⁻ /l	0±0	Max 0.1	
Phosphates	mg PO ₄ 2-/l	$0,13\pm0,08$	Max 2	0-2
Sulfates	mg SO4 ² ·/l	25,03±19,11	Max 250	0-960
Fluor	mg F·/l	$0,02\pm0,02$	1-2	0-1
Ammoniaque	Mg NH ₄ +/l	$0,28\pm0,26$	Max 0.5	0-5
Hydrogénocarbonates	mg HCO·/l	206,85±70,09		0-610
Carbonates (TA)	mg CO ⁻ /l	$0,20\pm0,18$		0-30
Cations				
Calcium	mg Ca ²⁺ /l	50,57±15,68	80 - 100	0-400
Magnésium	$mg Mg^{2+}/l$	10,02±5,46	80 - 100	0-60
Sodium	mg Na+/l	51,38±36,39	Max 200	0-920
Taux d'adsorption de sodium (SAR)		$1,73\pm2,02$		0-9
Fer	$mg Fe^{2+}/l$	0,01±0,01	Max 0.3	0-5
Potassium	mg K+/l	11±5,29	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	0,11±0,08	Max 10	100
Cuivre	mg Cu/l	0.04 ± 0.04	Max 2	0-0,2
Plomb	mg Pb/l	0,23±0,01	Max 0.01	0-5,0
Zinc	mg Zn / l	0.30 ± 0.09	Max 3	0-2,0

et en magnésium (12.14 mg/l), elles se sont révélées trop faibles par rapport aux limites normales fixées entre 80 et 100 mg/l.

Echantillons d'eau prélevés dans les Ssources du Sous-Bassin-Versant Bavonnais

Les résultats des analyses physicochimiques des échantillons d'eau prélevés dans les sources du Sous-Bassin-Versant Bayonnais sont présentés dans le tableau 5. Ces résultats montrent qu'au moment des prélèvements, les qualités physicochimiques de l'eau ont été acceptables pour l'irrigation sur la base de 24 des 26 paramètres testés (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, potassium, arsenic, plomb et zinc). La dureté totale a été de 264.98 mg/l CaCO₃. Elle s'est révélée donc trop élevée par rapport aux normes. Avec une valeur moyenne de 2.50 mg/l, les teneurs en cuivre ont dépassé largement la limite maximale admise qui est de 0.20 mg/l.

Pour la boisson, les qualités physicochimiques des échantillons d'eau analysés ont été acceptables pour 22 des 26 paramètres retenus (pH, dureté totale, alcalinité, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, sodium, SAR, fer, potassium, arsenic, plomb et zinc). La teneur en cuivre observée (2.50 mg/l) a dépassé la limite maximale de 2 mg/l admise pour l'eau de boisson. La teneur en plomb qui a été de 0.18 mg/l, a dépassé largement la limite maximale de 0.01 mg/l admise. La teneur en matières en suspension (9.50 mg/l) a été supérieure à la valeur maximale admise qui est de 5 mg/l. Quant à la teneur en magnésium (16.16 mg/l), elle s'est révélée trop faible par rapport aux limites normales fixées entre 80 et 100 mg/l.

Tableau 7. Valeurs observées (moyennes± Ecart-type, n=7) des paramètres physico-chimiques de l'eau Sources du Sous-Bassin-Versant Labranle

Paramètre	Unité	Valeur obser-	Normes	
		vée	Boisson	Irrigation
Caractéristiques de base				
pH		$7,89\pm0,27$	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO3/l	196,90±58,69	Max 500	0-90
Alcalinité	mgCaCO3/l	177,91±56,48		0-400
Matières en suspension	mg/l	0±0	Max 5	0-50
Indicateurs de salinité				
CE	μ mhos/cm	$388,33\pm96,21$	Max 1250	0-3000
TDS	mg/l	248,5312±61,57	0-800	0-2000
NaCl	mg NaCl/l	$203,33\pm72,85$	Max 2000	
Anions				
Chlorures	mg Cl/l	$25,49\pm13,10$	Max 250	0-1050
Nitrates	mgNO-3/l	$11,36\pm6,32$	Max 50	0-10
Nitrites	${ m mg~NO^2-/l}$	0±0	Max 0.1	
Phosphates	$mg PO_4^{2-}/l$	$0,30\pm0,15$	Max 2	0-2
Sulfates	$mg SO_4^2 \cdot / l$	$15,18\pm2,41$	Max 250	0-960
Fluor	mg F-/l	$0,26\pm0,33$	1-2	0-1
Ammoniaque	${ m Mg~NH_4^+/l}$	$0,43\pm0,37$	Max 0.5	0-5
Hydrogénocarbonates	mg HCO·/l	225,91±77,23		0-610
Carbonates	mg CO-/l	0,21±0,08		0-30
Cations				
Calcium	mg Ca ²⁺ /l	68,17±19,49	80 - 100	0-400
Magnésium	${f mg~Mg^{2+}/l}$	$6,74\pm3,58$	80 - 100	0-60
Sodium	mg Na+/l	42,00±20,39	Max 200	0-920
Taux d'adsorption de sodium (SAR)		$1,30\pm1,11$		0-9
Fer	$ m mg~Fe^{2+}/l$	$0,01\pm0,01$	Max 0.3	0-5
Potassium	$mg K^+/l$	$2,35\pm2,27$	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	$0,09\pm0,07$	Max 10	100
Cuivre	mg Cu/l	$0,2\pm0,07$	Max 2	0-0,2
Plomb	mg Pb / l	0,21±0,11	Max 0.01	0-5,0
Zinc	mg Zn / l	0,30±0,19	Max 3	0-2,0

Caractéristiques physicochimiques des échantillons d'eau prélevés sur le Sous-Bassin -Versant Labranle

Echantillons d'eau prélevés sur la Rivière Labranle

Les résultats des analyses physicochimiques des échantillons d'eau prélevés sur la rivière Labranle sont présentés dans le tableau 6. Comme il a été le cas pour Ennery et Bayonnais, ces résultats montrent qu'au moment des prélèvements, les qualités physico-chimiques de l'eau ont été acceptables pour l'irrigation sur la base de 24 sur 26 paramètres testés (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium,

magnésium, sodium, SAR, fer, arsenic, cuivre, plomb et zinc). La dureté totale a été de 166.19 mg/l CaCO3 et se révèle trop élevée. De même, les teneurs en potassium (11 mg/l en moyenne) dépassent largement les limites admises qui sont de 0 à 2 mg/l.

Pour la boisson, les caractéristiques ont été acceptables pour 23 sur 26 paramètres testés. Les paramètres dont les valeurs ont été acceptables incluent : pH, dureté totale, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, sodium, SAR, fer, potassium, arsenic, cuivre et zinc. Les teneurs en plomb ont dépassé la limite admise (0.01 mg/l) avec une

moyenne de 0.23 mg/l. Les teneurs en calcium (50,57 mg/l) et en magnésium (10,02 mg/l) se sont révélées trop faibles par rapport aux limites normales fixées entre 80 et 100 mg/l pour les deux éléments.

Echantillons d'eau prélevés dans les Sources du Sous-Bassin-Versant Labranle

Les résultats des analyses physicochimiques des échantillons d'eau prélevés dans les sources du Sous-Bassin-Versant Labranle sont présentés dans le tableau 7. Comme pour l'eau de la rivière, ces résultats montrent qu'au moment des prélèvements, les qualités physicochimiques de l'eau ont été acceptables pour l'irrigation sur la base de 23 sur 26 paramètres testés (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, arsenic, cuivre, plomb et zinc). La dureté totale a été de 196.90 mg/l CaCO3 et s'est révélée trop élevée. Avec une valeur moyenne de 11.36 mg NO₃/l, les teneurs en nitrates dépassent légèrement les limites admises qui sont de 0 à 10 mg/l. Les teneurs en potassium (2.35 mg/l en moyenne) dépassent aussi légèrement les limites admises qui sont de 0 à 2 mg/l. Les teneurs en cuivre (0.2 mg/l) ont atteint la limite admise (0.2 mg/l).

Pour la boisson, les caractéristiques ont été acceptables pour 23 des 26 paramètres testés. Les paramètres dont les valeurs ont été acceptables incluent : pH, dureté totale, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, sodium, SAR, fer, potassium, arsenic, cuivre et zinc. Les teneurs en plomb ont dépassé la limite admise (0.01 mg/l) avec une moyenne de 0.21 mg/l, tandis que les teneurs en calcium (50,57 mg/ l) et en magnésium (10,02 mg/l) se se sont révélées trop faibles par rapport aux limites normales fixées entre 80 et 100 mg/l.

Caractéristiques physicochimiques des échantillons d'eau prélevés sur le Sous-Bassin -Versant Bassin Magnan

<u>Echantillons d'eau prélevés sur la</u> Rivière Sedren

Les résultats des analyses physicochimiques des échantillons d'eau prélevés sur la rivière Bassin Magnan sont présentés dans le tableau 8. Ces résultats montrent qu'au moment des prélèvements, les qualités physico-chimiques de l'eau ont été acceptables pour l'irrigation sur la base de 23 des 26 paramètres testés (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, arsenic, plomb et zinc). La dureté totale a été de 317.75 mg/l CaCO3 et se révèle trop élevée. Quand ce phénomène se produit, le pourcentage de sodium lié aux particules d'argile par rapport au total des cations échangeables augmente et entraine une augmentation de la salinité/ sodicité du sol. Avec une valeur moyenne de 3.94 mg/l, les teneurs en potassium ont dépassé les limites admises qui sont de 0 à 2 mg/l. De même, les teneurs en cuivre (2.46 mg/l en moyenne) ont dépassé largement les limites admises qui sont de 0 à 0.2 mg/l.

Pour la boisson, elles etaient acceptables pour 21 des 26 paramètres testés. Les paramètres pour lesquels les caractéristiques ont été acceptables sont : pH, dureté totale, alcalinité, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, sodium, SAR, fer, potassium, arsenic et zinc. Les teneurs en cuivre (2.46 mg/l), plomb (0.32 mg/l) et matières en suspension (6 mg/l) ont été supérieures aux limites admises pour la potabilité qui sont respectivement 2, 0.01 et 5 mg/l. Les teneurs en calcium (73,60 mg/l) et en magnésium (32,50 mg/l) se sont révélées trop faibles par rapport aux limites normales fixées entre 80 et 100 mg/l.

Echantillons d'eau prélevés dans les Sources du Sous-Bassin-Versant Bassin Magnan

Les résultats des analyses physicochimiques des échantillons d'eau prélevés dans les sources du Sous-Bassin-Versant Bassin Magnan sont présentés dans le tableau 9. Ces résultats montrent qu'au moment des prélèvements, les qualités physicochimiques de l'eau ont été acceptables pour l'irrigation sur la base de 23 des 26 paramètres testés (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, magnésium, sodium, SAR, fer, arsenic, plomb et zinc). La dureté totale a été de 340.26 mg/l CaCO₃. Elle s'est révélée trop élevée par rapport aux normes. La teneur en potassium (4.58 mg/l) a été supérieure à la limite maximale admise de 2 mg/l. Avec une valeur movenne de 3.05 mg/l, la teneur en cuivre a dépassé largement la limite maximale admise qui est de 0.20 mg/l.

Pour la boisson, les qualités physicochimiques de l'eau étaient acceptables pour 21 des 26 paramètres testés. Les paramètres pour lesquels les caractéristiques ont été acceptables sont : pH, dureté totale, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrates, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, calcium, sodium, SAR, fer, potassium, arsenic et zinc. La teneur en cuivre observée a dépassé aussi la limite maximale de 2 mg/l admise pour l'eau de boisson. D'autres particularités à signaler en ce qui a trait aux normes de potabilité concernent surtout la teneur en plomb qui a été de 1.10 mg/l, dépassant largement la limite maximale de 0.01 mg/l admise. Quant à la teneur en magnésium (14.86 mg/l), elle s'est révélée trop faible par rapport aux limites normales fixées entre 80 et 100 mg/l.

Tableau 8. Valeurs observées (moyennes± Ecart-type, n=5) des paramètres physico-chimiques de l'eau de la Rivière Sedren

Paramètre	Unité	Valeur obser-	Normes	
		vée	Boisson	Irrigation
Caractéristiques de base				
pH		8,29±0,06	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO3/l	317,75±1,77	Max 500	0-90
Alcalinité	mgCaCO3/l	409,33±249,36		0-400
Matières en suspension	mg/l	6±4	Max 5	0-50
Indicateurs de salinité				
CE	$\mu mhos/cm$	900±141,42	Max 1250	0-3000
TDS	mg/l	576±90,51	0-800	0-2000
NaCl	mg NaCl/l	435±63,64	Max 2000	
Anions				
Chlorures	mg Cl/l	59,90±24,18	Max 250	0-1050
Nitrates	mgNO ⁻ 3/l	0±0	Max 50	0-10
Nitrites	mg NO2-/l	0±0	Max 0.1	
Phosphates	mg PO4 ²⁻ /l	0,14±0,07	Max 2	0-2
Sulfates	mg SO ₄ 2-/l	134,80±8,49	Max 250	0-960
Fluor	mg F·/l	$0,44\pm0,21$	1-2	0-1
Ammoniaque	Mg NH ₄ +/l	0,07±0,03	Max 0.5	0-5
Hydrogénocarbonates	mg HCO·/l	499,38±304,22		0-610
Carbonates	mg CO·/l	0,21±0		0-30
Cations				
Calcium	mg Ca ²⁺ /l	$73,60\pm6,51$	80 - 100	0-400
Magnésium	$ m mg~Mg^{2+}/l$	$32,50\pm3,52$	80 - 100	0-60
Sodium	mg Na+/l	184,21±7,44	Max 200	0-920
Taux d'adsorption de sodium (SAR)		4,50±0,58		0-9
Fer	$mg Fe^{2+}/l$	0,02±0,01	Max 0.3	0-5
Potassium	mg K+/l	3,94±0,67	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	$0,13\pm0,04$	Max 10	100
Cuivre	mg Cu / l	$2,46\pm2,2$	Max 2	0-0,2
Plomb	mg Pb / l	0,32±0,01	Max 0.01	0-5,0
Zinc	mg Zn / l	0,42±0,48	Max 3	0-2,0

Tableau 9. Valeurs observées (moyennes± Ecart-type, n=7) des paramètres physico-chimiques de l'eau Sources du Sous-Bassin-Versant Labranle

Paramètre	Unité	Valeur obser-	Normes	
		vée	Boisson	Irrigation
Caractéristiques de base				
pH		7,99±0,09	6.5 - 9.2	5,5-8,5
Dureté totale	mgCaCO3/l	340,26±72,11	Max 500	0-90
Alcalinité	mgCaCO3/l	336,73±66,30		0-400
Matières en suspension	mg/l	1,18±0,75	Max 5	0-50
Indicateurs de salinité				
CE	μmhos/cm	817,73±229,51	Max 1250	0-3000
TDS	mg/l	523,34±146,87	0-800	0-2000
NaCl	mg NaCl/l	404,09±115,75	Max 2000	
Anions	-			
Chlorures	mg Cl/l	58,77±61,09	Max 250	0-1050
Nitrates	mgNO-3/l	7,55±8,14	Max 50	0-10
Nitrites	mg NO2-/l	0,00±0,01	Max 0.1	
Phosphates	mg PO ₄ 2-/1	0,25±0,26	Max 2	0-2
Sulfates	mg SO ₄ 2-/1	62,83±55,25	Max 250	0-960
Fluor	mg F·/l	0,31±0,23	1-2	0-1
Ammoniaque	Mg NH ₄ +/l	0,08±0,02	Max 0.5	0-5
Hydrogénocarbonates	mg HCO ⁻ /l	401,95±78,08		0-610
Carbonates	mg CO ⁻ /l	$3,56\pm2,64$		0-30
Cations				
Calcium	mg Ca ²⁺ /l	83,72±21,55	80 - 100	0-400
Magnésium	$mg Mg^{2+}/l$	31,85±14,86	80 - 100	0-60
Sodium	mg Na+/l	76,91±53,05	Max 200	0-920
Taux d'adsorption de sodium (SAR)		1,74±1,05		0-9
Fer	$mg Fe^{2+}/l$	0,01±0,01	Max 0.3	0-5
Potassium	mg K+/l	4,58±3,38	Max 12	0-2
Métaux lourds				
Arsenic	μg As / l	0,18±0,06	Max 10	100
Cuivre	mg Cu/l	3,05±1,30	Max 2	0-0,2
Plomb	mg Pb/l	1,10±1,20	Max 0.01	0-5,0
Zinc	mg Zn / l	$0,60\pm0,25$	Max 3	0-2,0

Conclusion

Un total de 108 sources d'eau et quatre rivières ont été inventoriés dans le Bassin-Versant-Ennery-Quinte. Soixante échantillons ont été prélevés dans 43 des 108 sources inventoriées et dans 17 points sur les rivières. Les analyses ont porté sur 26 paramètres physicochimiques (pH, alcalinité, matières en suspension, CE, TDS, NaCl, chlorures, nitrites, phosphates, sulfates, fluor, ammoniaque, hydrogénocarbonates, carbonates, sodium, fer, arsenic et zinc) ainsi que le SAR. Les teneurs observées répondent aux normes de qualité de l'eau d'irrigation pour 22 des 26 paramètres analysés. La dureté totale a été trop élevée dans tous les échantillons en ce qui a trait à son utilisation pour l'irrigation. Les valeurs élevées de dureté totale sont indicatrices d'un risque de précipitation du calcium et du magnésium, d'augmentation du pourcentage de sodium lié aux particules d'argile et d'apparition de salinité.

Les teneurs en cuivre ont été trop élevées dans les échantillons prélevés dans tous les sous-bassinsversants, sauf dans ceux prélevés dans la Rivière Labranle. Les échantillons prélevés dans les sources du Sous-Bassins-Versant Labranle avaient des teneurs en cuivre atteignant la limite maximale admise pour l'eau d'irrigation. Ces teneurs élevées en cuivre seraient originaires du matériau parental du sol, le Sous-Bassin-Versant Bassin Magnan étant une ancienne zone d'extraction de cuivre. Il y a donc un risque de toxicité au cuivre pour les cultures irriguées avec ces eaux ainsi que des conséquences néfastes sur les consommateurs des denrées végétales ou de leurs produits dérivés. Les teneurs en potassium se sont révélées trop élevées dans tous les échantillons prélevés à Labranle, à Bassin Magnan et dans les échantillons prélevés dans la Rivière Ennerv-Marmelade. Les échantillons d'eau de sources du Sous-BassinVersant Ennery-Marmelade montraient aussi des teneurs en nitrates trop élevées pour l'eau d'irrigation. Le potassium et les nitrates sont des nutriments que les plantes peuvent utiliser. Ils peuvent aider à économiser sur l'achat des engrais si les calculs des doses d'engrais à utiliser en tiennent compte. Cependant, ils peuvent aussi avoir des effets toxiques s'ils ne sont pas pris en comptes dans lesdits calculs.

En ce qui a trait à la potabilité de l'eau, les teneurs observées ont été conformes aux normes de qualité pour 21 des 26 paramètres analysés. Tous les échantillons analysés ont montré des déficiences en magnésium. Les analyses ont révélé aussi des déficiences en calcium, sauf pour les échantillons prélevés dans les sources de Bayonnais et de Bassin Magnan. Ces éléments étant essentiels pour la santé humaine, des mesures devraient être envisagées pour un enrichissement approprié de l'eau de boisson au bénéfice des consommateurs. Les teneurs en plomb ont dépassé les limites admises par l'OMS pour tous les échantillons analysés. Les analyses ont révélé aussi des excès de cuivre. sauf pour les échantillons prélevés dans le Sous-Bassin-Versant de Labranle. Ces deux métaux lourds étant très nocifs pour la santé humaine, il est urgent d'envisager une décontamination de l'eau de boisson des zones concernées au profit des consommateurs. Les teneurs en matières en suspension ont dépassé les limites admises dans les échantillons d'eau de sources à Ennery-Marmelade et à Bayonnais et dans les échantillons d'eau de rivière à Bayonnais et à Bassin Magnan. Il est important d'accompagner les consommateurs pour la filtration appropriée de ces eaux quand elles sont destinées à la boisson.

Références bibliographiques

 Adam P. 2011. Précis d'hydrogéologie et forage d'eau. Tome IV. Les maladies hydrofécales (choléra) en Haiti. Besoin de surveillance et de recherche. Imp. H. Deschamps. 353 p. port-auPrince.

- 2. Chopinet C. 2012. Les méthodes d'analyse en toxicologie dans la police scientifique depuis l'affaire marie besnard. Thèse de de doctorat, U.F.R. de médecine et de pharmacie de Rouen. 76 p.
- Douglas AB. 2000. Alkalinity Control for Irrigation Water used in Greenhouses. NC State Univ.
- 4. Flynn R. 2009. Irrigation Water Analysis and Interpretation. NM State publ # guide W-102.

- 5. Harivandi A. 1999. Interpretating Turfgrass irrigation water test results. Univ. of California. Publ. # 8009
- 6. OMS. 2006. Normes de l'OMS sur l'eau potable. Accessible à http:// www.lenntech.fr/ applications/ potable/normes/normes-oms-eaupotable.htm
- 7. Shahinasi T et Kashuta V. 2008. Irrigation water quality and its effects upon soil. Ohrid, Rep. of Macedonia.
- 8. Texas Cooperative extension. 2000. Irrigation water quality standards and salinity Management strategies. The Texas A&M Univ. System. Publ. # B 1667, 4-
- 9. Thornton J. 1986. Geochemistry of cadmium. In: Cadmium in the environment. Eds: E. Miglin and O. Raumh. P. 7-12.
- 10. Walliam Y, Linsay E et Liz R. 2005. Farm Water Quality ant Treatment. AGFACTS AC. 29th ed.